# Globals
The following global constants and functions are present alongside the standard library's classes.
# Constants
const NaN: auto // f32 or f64Not a number as a 32-bit or 64-bit float depending on context. Compiles to a constant.
const Infinity: auto // f32 or f64Positive infinity as a 32-bit or 64-bit float depending on context. Compiles to a constant.
# Functions
function isNaN<T>(value: T): boolTests if a 32-bit or 64-bit float is
NaN.function isFinite<T>(value: T): boolTests if a 32-bit or 64-bit float is finite, that is not
NaNor +/-Infinity.function parseInt(str: string, radix?: i32): i64Parses a string to a 64-bit integer. Returns
0on invalid inputs.function parseFloat(str: string): f64Parses a string to a 64-bit float. Returns
NaNon invalid inputs.
# Builtins
The following builtins provide direct access to WebAssembly and compiler features. They form the low-level foundation of the standard library, while also being available for everyone to utilize where directly tapping into WebAssembly or the compiler is desired.
# Static type checks
By making use of the following special type checks, especially in generic contexts, untaken branches can be eliminated statically, leading to concrete WebAssembly functions that handle one type specificially.
function isInteger<T>(value?: T): boolTests if the specified type or expression is of an integer type and not a reference. Compiles to a constant.
function isFloat<T>(value?: T): boolTests if the specified type or expression is of a float type. Compiles to a constant.
function isSigned<T>(value?: T): boolTests if the specified type or expression can represent negative numbers. Compiles to a constant.
function isReference<T>(value?: T): boolTests if the specified type or expression is of a reference type. Compiles to a constant.
function isString<T>(value?: T): boolTests if the specified type or expression can be used as a string. Compiles to a constant.
function isArray<T>(value?: T): boolTests if the specified type or expression can be used as an array. Compiles to a constant.
function isFunction<T>(value?: T): boolTests if the specified type or expression is of a function type. Compiles to a constant.
function isNullable<T>(value?: T): boolTests if the specified type or expression is of a nullable reference type. Compiles to a constant.
function isDefined(expression: auto): boolTests if the specified expression resolves to a defined element. Compiles to a constant.
function isConstant(expression: auto): boolTests if the specified expression evaluates to a constant value. Compiles to a constant.
function isManaged<T>(expression: auto): boolTests if the specified type or expression is of a managed type. Compiles to a constant. Usually only relevant when implementing custom collection-like classes.
# Example of static type checking
function add<T>(a: T, b: T): T {
return a + b // addition if numeric, string concatenation if a string
}
function add<T>(a: T, b: T): T {
if (isString<T>()) { // eliminated if T is not a string
return parseInt(a) + parseInt(b)
} else { // eliminated if T is a string
return a + b
}
}
TIP
If you are not going to use low-level WebAssembly in the foreseeable future, feel free to come back to the following paragraphs at a later time.
# Utilities
function sizeof<T>(): usizeDetermines the byte size of the respective basic type. Means: If
Tis a class type, the size ofusize, the pointer type, is returned. To obtain the size of a class in memory, useoffsetof<T>()instead. Compiles to a constant.function offsetof<T>(fieldName?: string): usizeDetermines the offset of the specified field within the given class type. If
fieldNameis omitted, this returns what could be interpreted as either the size of the class, or the offset where the next field would be located, before alignment. Compiles to a constant. ThefieldNameargument must be a compile-time constantstringbecause there is no information about field names anymore at runtime. Therefore, the field's name must be known at the time the returned constant is computed.function alignof<T>(): usizeDetermines the alignment (log2) of the specified underlying basic type; i.e. If
Tis a class type, the alignment ofusizeis returned. Compiles to a constant.function assert<T>(isTrueish: T, message?: string): TTraps if the specified value is not true-ish, otherwise returns the non-nullable value. Like assertions in C, aborting the entire program if the expectation fails. Where desired, the
--noAssertcompiler option can be used to disable assertions in production.function instantiate<T>(...args: auto[]): TInstantiates a new instance of
Tusing the specified constructor arguments.function changetype<T>(value: auto): TChanges the type of a value to another one. Useful for casting class instances to their pointer values and vice-versa.
function idof<T>(): u32Obtains the computed unique id of a class type. Usually only relevant when allocating objects or dealing with RTTI externally.
function nameof<T>(value?: T): stringReturns the name of a given type.
function bswap<T>(value: T): TReverses the byte order of the specified integer.
function bswap16<T>(value: T): TReverses only the last 2 bytes regardless of the type argument.
# WebAssembly
# Math
The following generic built-ins compile to WebAssembly instructions directly.
function clz<T>(value: T): TPerforms the sign-agnostic count leading zero bits operation on a 32-bit or 64-bit integer. All zero bits are considered leading if the value is zero.
T Instruction i8, u8, i16, u16, i32, u32, bool i32.clz i64, u64 i64.clz function ctz<T>(value: T): TPerforms the sign-agnostic count tailing zero bits operation on a 32-bit or 64-bit integer. All zero bits are considered trailing if the value is zero.
T Instruction i8, u8, i16, u16, i32, u32, bool i32.ctz i64, u64 i64.ctz function popcnt<T>(value: T): TPerforms the sign-agnostic count number of one bits operation on a 32-bit or 64-bit integer.
T Instruction i8, u8, i16, u16, i32, u32 i32.popcnt i64, u64 i64.popcnt bool none function rotl<T>(value: T, shift: T): TPerforms the sign-agnostic rotate left operation on a 32-bit or 64-bit integer.
T Instruction i32, u32 i32.rotl i64, u64 i64.rotl i8, u8, i16, u16 emulated bool none function rotr<T>(value: T, shift: T): TPerforms the sign-agnostic rotate right operation on a 32-bit or 64-bit integer.
T Instruction i32, u32 i32.rotr i64, u64 i64.rotr i8, u8, i16, u16 emulated bool none function abs<T>(value: T): TComputes the absolute value of an integer or float.
T Instruction f32 f32.abs f64 f64.abs i8, i16, i32, i64 emulated u8, u16, u32, u64, bool none function max<T>(left: T, right: T): TDetermines the maximum of two integers or floats. If either operand is
NaN, returnsNaN.T Instruction f32 f32.max f64 f64.max i8, u8, i16, u16, i32, u32, i64, u64, bool emulated function min<T>(left: T, right: T): TDetermines the minimum of two integers or floats. If either operand is
NaN, returnsNaN.T Instruction f32 f32.min f64 f64.min i8, u8, i16, u16, i32, u32, i64, u64, bool emulated function ceil<T>(value: T): TPerforms the ceiling operation on a 32-bit or 64-bit float.
T Instruction f32 f32.ceil f64 f64.ceil i8, u8, i16, u16, i32, u32, i64, u64, bool none function floor<T>(value: T): TPerforms the floor operation on a 32-bit or 64-bit float.
T Instruction f32 f32.floor f64 f64.floor i8, u8, i16, u16, i32, u32, i64, u64, bool none function copysign<T>(x: T , y: T): TComposes a 32-bit or 64-bit float from the magnitude of
xand the sign ofy.T Instruction f32 f32.copysign f64 f64.copysign function nearest<T>(value: T): TRounds to the nearest integer half to even of a 32-bit or 64-bit float.
T Instruction f32 f32.nearest f64 f64.nearest i8, u8, i16, u16, i32, u32, i64, u64, bool none function reinterpret<TTo>(value: auto): TToReinterprets the bits of the specified value as type
T.TTo Instruction i32, u32 i32.reinterpret_f32 i64, u64 i64.reinterpret_f64 f32 f32.reinterpret_i32 f64 f64.reinterpret_i64 function sqrt<T>(value: T): TCalculates the square root of a 32-bit or 64-bit float.
T Instruction f32 f32.sqrt f64 f64.sqrt function trunc<T>(value: T): TRounds to the nearest integer towards zero of a 32-bit or 64-bit float.
T Instruction f32 f32.trunc f64 f64.trunc i8, u8, i16, u16, i32, u32, i64, u64, bool none
# Memory
Similarly, the following built-ins emit WebAssembly instructions accessing or otherwise modifying memory.
NOTE
The immOffset and immAlign arguments, if provided, must be compile time constant values.
function load<T>(ptr: usize, immOffset?: usize): TLoads a value of the specified type from memory. Equivalent to dereferencing a pointer in other languages.
T Instruction If contextual type is i64 i8 i32.load8_s i64.load8_s u8 i32.load8_u i64.load8_u i16 i32.load16_s i64.load16_s u16 i32.load16_u i64.load16_u i32 i32.load i64.load32_s u32 i32.load i64.load32_u i64, u64 i64.load n/a f32 f32.load n/a f64 f64.load n/a <ref> i32/i64.load n/a function store<T>(ptr: usize, value: auto, immOffset?: usize): voidStores a value of the specified type to memory. Equivalent to dereferencing a pointer in other languages and assigning a value.
T Instruction If value is i64 i8, u8 i32.store8 i64.store8 i16, u16 i32.store16 i64.store16 i32, u32 i32.store i64.store32 i64, u64 i64.store n/a f32 f32.store n/a f64 f64.store n/a <ref> i32/i64.store n/a function memory.size(): i32Returns the current size of the memory in units of pages. One page is 64kb.
function memory.grow(value: i32): i32Grows linear memory by a given unsigned delta of pages. One page is 64kb. Returns the previous size of the memory in units of pages or
-1on failure.WARNING
Calling
memory.growwhere a memory manager is present might break it.function memory.copy(dst: usize, src: usize, n: usize): voidCopies
nbytes fromsrctodst. Regions may overlap. Emits the respective instruction if bulk-memory is enabled, otherwise ships a polyfill.function memory.fill(dst: usize, value: u8, n: usize): voidFills
nbytes atdstwith the given bytevalue. Emits the respective instruction if bulk-memory is enabled, otherwise ships a polyfill.function memory.repeat(dst: usize, src: usize, srcLength: usize, count: usize): voidRepeats a sequence of bytes given as
srcwithsrcLengthcounttimes into destinationdst.function memory.compare(lhs: usize, rhs: usize, n: usize): i32Compares the first
nbytes ofleftandrightand returns a value that indicates their relationship:- Negative value if the first differing byte in
lhsis less than the corresponding byte inrhs. - Positive value if the first differing byte in
lhsis greater than the corresponding byte inrhs. - Zero if all
nbytes oflhsandrhsare equal.
- Negative value if the first differing byte in
function memory.data(size: i32, align?: i32): usizeGets a pointer to a zeroed static chunk of memory of the given size. Alignment defaults to
16. Arguments must be compile-time constants.function memory.data<T>(values: T[], align?: i32): usizeGets a pointer to a pre-initialized static chunk of memory. Alignment defaults to the size of
T. Arguments must be compile-time constants.
# Control flow
function select<T>(ifTrue: T, ifFalse: T, condition: bool): TSelects one of two pre-evaluated values depending on the condition. Differs from an
if/elsein that both arms are always executed and the final value is picked based on the condition afterwards. Performs better than anif/elseonly if the condition is random (means: branch prediction is not going to perform well) and both alternatives are cheap. It is also worth to note that Binaryen will do relevant optimizations like switching to aselectautomatically, so simply using a ternary? :may be preferable.function unreachable(): autoEmits an unreachable instruction that results in a runtime error (trap) when executed. Both a statement and an expression of any type. Beware that trapping in managed code will most likely lead to memory leaks or even break the program because it ends execution prematurely.
# Constructing constant vectors
function i8x16(a: i8, ... , p: i8): v128Initializes a 128-bit vector from sixteen 8-bit integer values. Arguments must be compile-time constants.
function i16x8(a: i16, ..., h: i16): v128Initializes a 128-bit vector from eight 16-bit integer values. Arguments must be compile-time constants.
function i32x4(a: i32, b: i32, c: i32, d: i32): v128Initializes a 128-bit vector from four 32-bit integer values. Arguments must be compile-time constants.
function i64x2(a: i64, b: i64): v128Initializes a 128-bit vector from two 64-bit integer values. Arguments must be compile-time constants.
function f32x4(a: f32, b: f32, c: f32, d: f32): v128Initializes a 128-bit vector from four 32-bit float values. Arguments must be compile-time constants.
function f64x2(a: f64, b: f64): v128Initializes a 128-bit vector from two 64-bit float values. Arguments must be compile-time constants.
# Inline instructions
In addition to using the generic builtins above, most WebAssembly instructions can be written directly in AssemblyScript code. For example, the following is equivalent:
// generic builtin
v128.splat<i32>(42);
// inline instruction
i32x4.splat(42);
← Number Types Overview →